Feuille d'exercices n°4

Le modèle Principal-Agent avec sélection adverse

1 Exercice 1

Soit un emprunteur qui désire emprunter un montant (fixe) I pour investir dans un projet produisant un revenu Y avec probabilité p_{θ} , et 0 avec probabilité p_{θ} , où θ désigne le type de l'emprunteur.

Il y a deux types, $\theta = H$ ou L, équiprobales a priori ($\Pr[\theta = H] = \Pr[\theta = L] = \frac{1}{2}$). On a $p_H > p_L$ (le type H est le 'bon emprunteur'). L'utilité de réserve de l'emprunteur dépend de son type : $\bar{U}_H > 0 = \bar{U}_L$.

Le prêteur est neutre au risque, et en situation de monopole. Le coût des fonds est donné par le placement alternatif sans risque (taux r = 0 pour simplifier).

Hypothèses sur les paramètres :

$$p_L Y - I > 0 \tag{1}$$

$$p_H Y - I > \bar{U}_H \tag{2}$$

On notera R le paiement (total) de l'emprunteur au prêteur. On suppose de plus que ce paiement ne peut pas dépasser le profit réalisé par l'investissement (responsabilité limitée).

- Q1. Interpréter les conditions (1) et (2). Caractériser la situation de 1^{er} rang.
- **Q2.** On suppose que les contrats sont dans $\{R \in \mathbb{R} \mid 0 \leq R \leq Y\}$. A l'aide d'une représentation graphique, montrer que le paiement spécifié est indépendant du type. Calculer $\Pi(R)$, le profit espéré du prêteur. Déterminer le paiement optimal R^{SB} (on distinguera suivant la valeur de \bar{U}_H). Calculer le coût lié à l'asymétrie d'information.
- **Q3.** On suppose maintenant que le prêteur peut demander une garantie (un "collatéral"), i.e. un actif de valeur C immobilisé et saisi en cas de non remboursement. L'espace des contrats est donc $\{(C,R) \mid C \geq 0 \mid 0 \leq R \leq Y\}$.
- **a.** dans le plan (C, R), représenter l'ensemble des contrats acceptables pour chaque type (2 cas suivant la valeur de \bar{U}_H).
 - b. écrire le programme de second rang.
 - c. montrer que si \bar{U}_H est élevé, il n'est pas possible de discriminer les 2 types.
- **d.** pour la suite, on se place dans le cas ou \bar{U}_H n'est pas trop élevé. A partir des contraintes d'incitations, montrer que à l'optimum $C_H \geq C_L$ (si les 2 types participent). Interpréter.
- e. montrer que le prêteur peut offrir un menu de contrats qui lui procure son utilité de 1^{er} rang. Conclure.
- **Q4.** On suppose maintenant que l'immobilisation de la garantie C induit un coût δC pour l'emprunteur $(\delta > 0)$.
 - **a.** intérpréter δ
- **b.** montrer que à utilité donnée pour un type, le contrat préféré par le prêteur est celui où la garantie est minimale.
- c. en distinguant selon que (PC_L) et (IC_H) sont serrées, ou (PC_H) et (IC_L) sont serrées, déterminer graphiquement les deux menus optimaux possibles.

2 Exercice 2

On considère le problème Principal-Agent suivant. Une banque (le Principal) doit décider du montant k à prêter à un emprunteur (l'Agent) sans richesse personnelle pour investir dans un projet rapportant $2\sqrt{k}$. Le placement alternatif pour la banque est donné par le taux sans risque r = 0.

S'occuper d'un projet se traduit par un coût pour l'Agent, qui dépend de son type. Plus précisément, le coût (en terme de perte d'utilité) pour un investissement de taille k est $c_H k$ si l'Agent est de type H, et $c_L k$ si l'Agent est de type L, avec $c_L > c_H > 0$. La probabilité a priori que le type soit H est λ_0 .

L'utilité de réserve de l'emprunteur est indépendante de son type, et normalisée à $\bar{u}=0$. Principal et Agent sont neutres au risque. Seul le profit du projet peut être utilisé pour payer l'Agent ou la banque. On notera D le paiement reçu par l'Agent.

- 1.) Caractériser la situation de premier rang en fonction du type de l'Agent (utilité du Principal et de l'Agent).
- 2.) Pour la suite, seul l'emprunteur connaît son type. Le Principal connaît simplement la distribution a priori des types (id est, λ_0). On suppose tout d'abord qu'il est dans l'intérêt du Principal de contracter avec les deux types.
 - a. Ecrire le programme de second rang.
- **b.** Montrer que les deux contraintes serrées à l'optimum sont la contrainte de participation pour le type L et la contrainte d'incitation (de révélation) pour le type H.

(Remarque: on pourra admettre ce résultat pour continuer, en le précisant sur la copie).

c. Caractériser le contrat de secong rang. Montrer que le profit espéré de la banque peut s'écrire sous la forme

$$\lambda_0 \frac{1}{1 + c_H} - \lambda_0 (c_L - c_H) \frac{1}{(1 + c_L + \gamma)^2} + (1 - \lambda_0) \frac{1}{1 + c_L + \gamma}$$

avec $\gamma = \frac{\lambda_0}{1-\lambda_0} (c_L - c_H)$. Interpréter en comparant avec la situation de premier rang.

- **3.)** Il peut également être dans l'intérêt du Principal de proposer un contrat excluant le type L. A quelle condition ceci est-il optimal pour la banque? Montrer alors que le contrat avec exclusion n'est jamais optimal.
- 4.) On suppose maintenant que la banque a la possibilité d'évaluer le type de l'emprunteur avant de proposer un contrat. L'évaluation a un coût c > 0.
- a. On considère dans un premier temps le cas où l'évaluation révéle parfaitement le type de l'emprunteur. A quelle condition la banque choisit-elle d'évaluer l'emprunteur. Interpréter cette condition.
- **b.** On considère maintenant que l'évaluation est imparfaite. Plus précisément, l'évaluation donne un signal $\sigma \in \{0,1\}$ avec les caractéristiques suivantes :

$$\Pr[\sigma = 1|L] = 0, \quad \Pr[\sigma = 0|H] = \varepsilon.$$

A quelle condition la banque choisit-elle d'évaluer.

c. On suppose pour finir que la banque peut choisir l'intensité d'évaluation $\varepsilon \in [0, 1]$, au coût $c\varepsilon$. Représenter le profit de la banque en fonction de ε . Commenter.